Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453966

RESUMO

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Assuntos
Dieta Cetogênica , Gorduras Insaturadas na Dieta , Neoplasias Pulmonares , Camundongos , Animais , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Plantas/farmacologia , Óleos de Plantas/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Gorduras na Dieta/metabolismo , Azeite de Oliva , Dieta , Carboidratos
2.
Front Pharmacol ; 14: 1234300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927606

RESUMO

Objectives: Non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH) and hepatocarcinoma is a serious and growing problem. However, the development of new therapies is severely hindered by a lack of high-throughput assays for drug testing. Methods: We have developed a simple transwell assay comprised of HepG2 hepatocytes, hepatic LX-2 stellate cells, and differentiated THP-1 cells. The cells were incubated with an activating mixture containing the NASH-associated risk factors, glucose, insulin, free fatty acids (FFAs), and lipopolysaccharide (LPS) for 72 h. We compared different combinations of culture conditions to obtain a model system that recapitulates the main features of NAFLD/NASH, i.e., increased steatosis, reactive oxygen species (ROS), secretion of pro-inflammatory cytokines/chemokines, and presence of fibrosis. To confirm the usefulness of the optimized model system, we screened for compounds that inhibit steatosis in the hepatocytes and evaluated the most effective compound in the triculture model system. Results: The activating mixture stimulated HepG2 cells in this triculture to accumulate more fat and produce higher levels of reactive oxygen species (ROS) than HepG2 cells in monocultures. As well, higher levels of inflammatory cytokines and chemokines (IL-8, IL-6, MIP-1α, etc.) were produced in this triculture compared to monocultures. In addition, in all LX-2 monocultures and cocultures, exposure to the activating mixture increased markers of fibrosis. A major strength of our triculture system is that it makes possible the simultaneous monitoring of 4 main features of NASH, i.e., steatosis, oxidative stress, inflammation and fibrosis. Screening potential modulators that may reduce steatosis in HepG2 cells revealed the protective effects of the isoalkaloid, berberine. Tested using this novel triculture assay, treatment with 5 µM berberine decreased steatosis and ROS in HepG2 hepatocytes, reduced inflammatory cytokine production and inhibited collagen production from LX-2 cells. Conclusion: This simple triculture model recapitulates the main features of NAFLD/NASH and should be useful for high-throughput preclinical drug discovery. In this model, berberine showed promising results in decreasing steatosis and ROS and protection against fibrosis.

3.
Front Nutr ; 9: 1017347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505238

RESUMO

Since our previous studies found a low carbohydrate (CHO) diet containing soy protein and fish oil (15%Amylose/Soy/FO) significantly reduced lung and breast cancer in mice we asked herein if this low CHO diet could also delay the onset of myeloid malignancies. To test this we employed a miR-146a knock-out (KO) mouse model and found the 15%Amylose/Soy/FO diet increased their median lifespan by 8.5 month, compared to these mice on a Western diet. This was associated with increased lymphocytes and reduced monocytes, granulocytes, blood glucose and insulin levels. Inflammatory cytokine/chemokine studies carried out with 6-month-old mice, before any signs of illness, revealed the 15%Amylose/Soy/FO diet significantly reduced pro-inflammatory cytokines. This low CHO diet also led to an increase in plasma ß-hydroxybutyrate and in liver fatty acid synthase levels. This, together with higher liver carnitine palmitoyltransferase I levels suggested that the 15%Amylose/Soy/FO diet was causing a systemic metabolic shift from glucose to fatty acids as an energy source. Lastly, we found the 15%Amylose/Soy/FO diet resulted in significantly higher numbers of primitive hematopoietic stem cells (HSCs) in the bone marrow of 6-month-old mice than those fed a Western diet. Taken together, these results suggest a 15%Amylose/Soy/FO diet reduces chronic inflammation and increases fatty acid oxidation and that this, in turn, may prevent HSC proliferation and exhaustion, thereby delaying myeloid malignancy-induced death of miR-146a KO mice. We suggest a low CHO diet containing soy protein and fish oil could be beneficial in reducing the risk of myeloid malignancies in patients with low miR-146a levels.

4.
Front Nutr ; 9: 1051418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532545

RESUMO

Objectives: Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. Materials and methods: Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. Results: Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. Conclusion: Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.

5.
Carcinogenesis ; 43(2): 115-125, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34958345

RESUMO

We recently showed that a low-carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low-CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T-antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low-CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and prostaglandin E2 (PGE2). This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low-CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, or in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), carnitine palmitoyltransferase Ia (CPT1a) and fatty acid synthase (FAS), it is likely that this difference in response of the two cancer types to this low-CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.


Assuntos
Neoplasias da Mama , Dieta com Restrição de Carboidratos , Óleos de Peixe , Neoplasias da Próstata , Proteínas de Soja , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Dinoprostona , Feminino , Óleos de Peixe/administração & dosagem , Glucose , Insulina , Interleucina-6 , Antígeno Ki-67 , Masculino , Camundongos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/prevenção & controle , Proteínas de Soja/administração & dosagem , Fator de Necrose Tumoral alfa
6.
Carcinogenesis ; 41(8): 1083-1093, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32215551

RESUMO

We recently found that a diet composed of 15% of total calories as carbohydrate (CHO), primarily as amylose, 35% soy protein and 50% fat, primarily as fish oil (FO) (15%Amylose/Soy/FO) was highly effective at preventing lung nodule formation in a nicotine-derived nitrosamine ketone (NNK)-induced lung cancer model. We asked herein whether adopting such a diet once cancers are established might also be beneficial. To test this, NNK-induced lung nodules were established in mice on a Western diet and the mice were then either kept on a Western diet or switched to various low CHO diets. Since we previously found that sedentary mice develop more lung nodules than active mice, we also compared the effect of exercise in this cancer progression model. We found that switching to a 15%Amylose/Soy/FO diet reduced lung nodules and slowed tumor growth with both 'active' and 'sedentary' mice. Ki67, cleaved caspase 3 and Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling assays suggested that the efficacy of the 15%Amylose/Soy/FO in lowering tumor nodule count and size was not due to a reduction in tumor cell proliferation, but to an increase in apoptosis. The 15%Amylose/Soy/FO diet also significantly lowered liver fatty acid synthase and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 expression, pointing to a global metabolic switch from glycolysis to fatty acid oxidation. Mice fed the 15%Amylose/Soy/FO diet also had significantly reduced plasma levels of interleukin (IL)-1ß, IL-6 and tumor necrosis factor α. These results suggest that the 15%Amylose/Soy/FO diet may slow tumor growth by suppressing proinflammatory cytokines, inducing a metabolic switch away from glycolysis and inducing apoptosis in tumors.


Assuntos
Dieta com Restrição de Carboidratos/métodos , Óleos de Peixe , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Proteínas de Soja , Amilose , Animais , Apoptose , Carcinógenos/toxicidade , Caspase 3/metabolismo , Citocinas/metabolismo , DNA Nucleotidilexotransferase , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glicólise , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/metabolismo , Fígado/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos , Neoplasias Experimentais , Nitrosaminas/toxicidade , Oxirredução , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA